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C A L C U L A T I O N  O F  S P A T I A L  E Q U I L I B R I U M  F O R M S  F O R  T H I N  

E L A S T I C  R O D S  B Y  T H E  S E L F - E Q U A L I Z I N G  D I S C R E P A N C Y  

M E T H O D  
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Algorithms for finding the planar equilibrium forms of thin elastic rods by the self-equalizing discrepancy method were 

presented in [1]. Below we will present algorithms for finding spatial equilibrium forms by the same method. 

1. Basic Equations. To determine the position of the rod points, together with a f'Lxed coordinate system x I with 

defining vectors e i (i = 1, 2, 3) (Fig. 1) it will be convenient to use the arc length of the bar axis (s E [0,/]) and coordinates 

Xl', x 2' with origin on the rod axis and defining vectors el ' ,  e2', directed along the main axes of the bar cross sections. The 

orientation of el', i = 1, 2, 3 (e 3' = e 1' • e2') 
The equilibrium equation can be written 

is specified by the Euler angles 0, if, ,p (Fig. 2). 

in the form [2, 3] 

dF arM 
- - +  f =  0 , - - +  ' x F  = 0, (1.1) 
ds ds e3 

the rod cross sections, f is the load surface vector, where F, M are force vectors of the moments in 

e; = sin 0 (sing, - e I - cosV, �9 ez) + cos 0 �9 %. 

Below we will consider a class of problems in which the vector F is independent of 0, ~, ~o and is completely defined by the 

first expression of Eq. (1.1) and the boundary conditions. Below we will consider the function F=F(s )  to be known. 

We assume [2, 3] that 

t 

M = Mke i , M  1 = Ap, M 2 Bq, M 3 = C7:. (1.2) 

Here A, B, C are the rod rigidities relative to inflection and torsion, p, q are curvatures; r is the torsion of the rod axis: 

d~ dO 
p = ~ sin0 �9 s in~  + -~s cos,e, 

d~O dO 
q = ~ s  sin0 �9 co~ ~ - -~s sin~o, (1.3) 

We will limit or treatment to the class of  problems with boundary conditions 

O=~p=~o=xz=x2=x3=O for s = 0 ;  (1.4) 

or 

0 = 0 o , ~  =~0 o ,P  =~o_o for s = l (1.5) 
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M -- O. (1.6) 

With the assumptions made the problem solution reduces to integration of the second expression of Eq. (1.1) and Eqs. 
(1.2), (1.3) given conditions (1.4), (1.5) or (1.6). 

After calculation of the functions O, if, ~o the coordinates of the rod axis x k are calculated with the expression 

j ' , .  
x k = e 3 ekds. 

0 

2. Variation Formulation of the Problem. We denote by 6y the variation of the rotation vector 

~ ) '  = e3cS~ + e' 3 6So + n~ 0, n = cosw - e~ + s i ~  �9 e 2. 

It can easily be shown that the variation 63, can be written in the form 

6y = e', �9 6y k, 67z = sinO �9 sin~o �9 6W + cos~ �9 60, 

6y 2 = sin 0 �9 cos~ - ~ - sin~p �9 60, 

6y 3 = c o s 0 - 6 ~ + 6 9 , ,  

while the derivatives dek'/ds are related to p, q, r by the equations 

ds 
t t 

- -  ~ X e , ,  ~ = p e  t + q e '  2 + r e '  3. 

Hence it follows that 

4 
d 

~ss 67 = e'lJp + e' 2 6q + e; &.  (2.1) 

Multiplying the second expression of Eq. (1.1) by 63,, integrating over s with consideration of Eq. (2.1), and using 
the equality 

(e; x F) fir = F(J7 x e~) = F �9 6e; = 6(F �9 eg,  

we find that the problem solution corresponds to an extremum of the functional 

I i 

= ~ f (Ap a + Bq 2 + Cr 2 - 2 F .  e g d s  (2.2) 
0 

in the class of  functions d, ~k, ~' which satisfies conditions (1.4), and if the boundary conditions at s = l are formulated in the 

form of Eq. (1.5), then those conditions as well. 

Below we will present an algorithm for construction of  a sequence of approximations with monotonically decreasing 

values of functional (2.2), based on alternating variation of only one of the functions ~o, if, ~o. 

3. Approximation of  the Energy Functional by Quadrat ic  Functionals. Let O(s), }(s), ~(s) be some functions equal 

to zero at s = 0 and satisfying conditions (1.5) if the latter are specific. In the proposed algorithm we construct functions O(s), 

t}(s),~(s) equal to zero at s = 0, and in the case of (1.5) also at s = l, for which 

�9 (~ '+  O, ~ + ~b, ~ + ~) ~ ~(~, 0 ,  ~), (3.1) 

with the equality in Eq. (3.1) being satisfied when O(s), if(s), ~b(s) are identically equal to zero, which is possible only when 

O, ~, ~ satisfy the conditions of  the extremum of the functional q~. 

Construction of the functions 0(s), ~(s), ~(s) involves three stages. In each of these one of the functions is def'med in 
tunl. 
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M+ dM 

rM 

Fig. 1 Fig. 2 

In the first stage we find the function 0(s), satisfying the inequality 

o(~" + o, ~v, ~) ~ o(~,, ~, s~). (3.2) 

The functional ~(0 + O, ~, ~) is approximated by a functional ~o quadratic in 0 

1 1 
% = 2 f IA(~ + i,)2 + B(~ +/~)~ + c (~  + ~)" + ~ 0 ~ + 2(Q b - f3 las, 

o 

where ~, r ~ are curvatures and torsion corresponding to functions 0, ~, ,~; 

(3.3) 

b = b cosY. sin~ + ~cos~ ;  

�9 a~ _ a0 sin~; /1 = 0 ~ cosO - cos~ - e-S 

/ t  = Flsinq~ -- F2cos? k 

F k are the components of the vector F in the fixed coordinate system x k (k = 1, 2, 3). The approximation is performed by 
the following rule; p, q, z are replaced by the linear portions of expansions in a series in 0, and F-e3' , by the quadratic portion 
of an expansion in a series in 0. 

For sufficiently small values of the function 0(s) from the inequality 

,t,,(~ + ,~, ~, ~) ~ a,~ ,~, ~) (3.4) 

we have inequality (3.2). Therefore the problem of reducing functional (2.2) by selection of 0(s) can be regarded as the 
problem of defining a function 0(s) which satisfies Eq. (3.4) and the condition 

mxl,~Cs)l -< ,~ 
s 

(where t~ 1 is a constant which can be adjusted during definition of 0(s) such that Eq. (3.2) follows from Eq. (3.4). 
In the second stage the functional ,I,(0, ~/ + ~b, ,~) (0' = 0 + 0) is approximated by a functional ,I,r quadratic in if: 

i ' b,)2 ~,), 
% = ~ f [A(k' + + B(~' + + c(~-' + ~,)2 

0 

+ ~b2hsia O; - 2(7" + ~kN'sir~) lds. 

Here ~', Cl', ~' are curvatures and torsion corresponding to the functions 0, ~, ,~; 

(3.5) 
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TABLE 1 

r t,/,= 

0,140 I 

0,228 2 

0,281 4 

0,307 8 

0,312 10 

Fig. 3 

e~, #, e~ _ e~, _ 
h' = ~ stay �9 sin@; = ~ sinO' �9 cos~; ~' = --ecos0'., 

§  = # sin~ + e, cos~; ~ '  = : :os~  + F:in~. 

The approximation is performed by the same rule by which functional (3.3) was constructed. 

The function ~b(s) is def'med by the conditions 

where ~2 is a constant selected to achieve the inequality 

�9 ( ~ ,  r + r  6)  ~< ~'(~,  9 ,  6).  

In the third stage the functional #(0,  ~ ' ,  ~ + ~) (d/ = ~ + r is approximated by a functional ~ quadratic in #: 

l 

t ~,,)2 ~1,,)2 ~,,)2 2T" lds .  a ,  = i f [A(~" + + s (~"  + + c ( r '  + - 
0 

Here ~" ,  q " ,  ~"  is approximated by a functional O, ~/', ~; 

(3.6) 

d ' d ~  . p"---- /'-~'s si~ "COS~---'~'s sin~}cp; 
~" ~/~, d~ _~. 

= - - -  s i z~  �9 sin~ + "~s cossaJ ~o; 

~,, a6 ~.,, = sin,Y(F:inr - F2cos~' ) + F:os~. 
= ~'s' 

The approximation is performed by the same rule used for Eqs. (3.3), (3.5). The function ~(s) is defined by the condition 

%(~, ~', ~ + ~) ,~ %(~, ~', ~), maxl~fs)l ~ a~, 
# 

where cx 3 is a constant selected to achieve the inequality 
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T A B L E  2 

N ~'  xl(l)  x2(' ) x3(l) 

40 

80- 

100 

- 1 , 0 7 8 - 1 0  -3  

- 1 , 0 7 8 - 1 0  -3  

- 1 , 0 7 8 . 1 0  -3  

0 ,0707 

0,0711 

0,0711 

- 0 , 2 3 8 2  

- 0 . 2 3 9 0  

- 0 , 2 3 9 2  

0 .9570  

0 ,9566  

0 ,9566 

II �9 

Fig. 4 

r~, f 

o,4. 

o~.- 

Fo- 

0 ' o , ' z  ' 

Fig. 5 

i i i i 
o,4 o,r tax31 

4. Di f fe rence  A p p r o x i m a t i o n .  The bar axis is divided into N elements by the points s i = (i - 1)/h (i = 1, 2 . . . . .  

N + 1, h = l /N) .  These elements are enumerated by numbers i + 1/2 (i = 1, 2 . . . . .  N) and quantities corresponding to the 

element i + 1/2 bear  the index i + 1/2. We set 

( 4  o n = ~ (o, + o , . , ) ,  = -~(o , . ,  - 0,) 
i+ l.~ 

(where 0 i is the value of O at the points). Similarly,  in terms of ~i,  ~Pi we define the quantities 

at the points. The cosines and sines in the element i + 1/2 are calculated with the expressions 

(cos O )~§ = cos O ~+la, (sin~)~+ta = sin~~247 

Functional (2.2) is replaced by  the difference expression 

N 

i--I 
+ Cr~t§ a - 2F e '  , ,§ 9,§ (4.1) 

where 

1 
P~§ = ~ [(r - ~ ) s i n  0~§ �9 sin~§ a + (0~§ - O~)co~§ , 

and the quantities 
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TABLE 3 

Number of ~ '  "1(t) ":z (1) x3(l) 
iterations 

0 
30 
I00 
120 

2g,43 
19,92 
19.75 

19,75 

0 
2,7' 10 -2 
1,9.- 10 -2 
1,9.10 -2 

- 0 , 7 4 0  
- 0 , 4 7 9  

-0,345 
-0,331 

-0,110 
6,3" 10 -2 
1 ,8 .10  -2 

2,5- 10 -2 

have a similar meaning. Functionals (3.3), (3.5), (3.6) are replaced by the corresponding difference functionals ,I,o', ~r ~ , ' .  

The quadratic portions A o, A~, of the functionals ~0 ' ,  q~'  have the following values: 

N 
1 �9 - 

= [APi§ + T.~a~.~ a ] 

' ] 
l h  D.  ~s * 

2 i - I  i§ 

U 

% : ~- h (b; § + 8(q , .~) + # '  ~si.~; , ,~  
.=  

2 

12 h D. ~ - -  T.tpi.t a , 

,=t L " ,~§  
] 

D. = rain(A, B, (7), T. = max Z I(F,),.~I. 
i i t11 

The portion of the functional ~ . '  quadratic in ~i is a passively defined form. From this it follows that to minimize the 
t functionals r  cI,r ~ .  given the condition 

D. 
h ~ < ~  

T.I 

we can use the self-equalizing discrepancy method of [1], thus generating values of ~9 i, ffi, ~bi (i = 1, 2 . . . . .  N + 1) for which 

. ' ( ~ ,  + O,. ~, + ~k,, ~, + #,) ~ *'(o,. ~,, ~,). 

with equality occurring only in the case where 0i, {i, Oi satisfy the conditions of an extremum of the functional cI,' and the 
quantities 0 i, ~b i, ~i (i = 1, 2 . . . . .  N + 1) are thus equal to zero. 

Thus, using the self-equalizing discrepancy method of [1], we can construct a sequence of approximate solutions with 

monotonically decreasing values of the functional ~ ' .  The sequence wil! converge, since the functional is bounded below: 

�9 ' >~ - -  T . I .  

5. Examples  of  Equil ibrium Form Calculation. We will consider rods of rectangular cross section (Fig. 3). In this 

case 

A = Ea3b/12, B = Eab3/12, C = yEba3/2(l  + v). 

The 3' values are taken equal to those indicated in [4]. Some are presented in Table 1. 
Below we will use dimensionless quantities: s, x k, ratios of arc length and coordinate to bar length l; p, q, r, curvatures 

and torsion multiplied by l; A, B, C, ratios of  rigidities to B; F k, M k, components of force and moment vectors multiplied by 

/2/B and/ /B respectively; cI,', functional (4.1) multiplied by l/B. 
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t -  

Fig. 6 

In one of the examples we consider equilibrium states for inflection of intensity F = Fe I of  a bar with side length 

ratiovalue b/a = 8 (Fig. 4). It was assumed that the bar end s = 1 could rotate freely. Figure 5 shows the dependence of F 

on absolute ]Ax  3 [ of the vertical displacement of the bar end s = 1 ( [Ax 3 [ = 1 - x  3, where x 3 is the coordinate of the 

bar end s = 1 in the deformed state). The dashed line corresponds to the planar equilibrium state, the solid, to the three- 

dimensional, F* = 0.6 is the upper critical load [5], F.  = 0.08, the lower critical load. 

Table 2 presents values of the functional cI,' and bar end coordinate s = 1, corresponding to F = 0.08 and division 

of the bar axis into 40, 80, and 100 elements. These values practically coincide. The criterion used for halting the calculation 

process was constancy to three significant figures in the values of the energy functional and the bar end coordinate. The number 

of iterations required to obtain the equilibrium forms was practically independent of number of  elements, into which the bar 

axis was divided, being approximately equal to 50. 

We also considered equilibrium states for compression of a twisted bar of square cross section with boundary conditions 

o(o) = ~:(o) = ~,(o) = o(D = w(~) = o, 

~p(1) = 2~, F(1) = - 9e 3. 

Together with the equilibrium state in which the bar axis is rectilinear (~ = ~b = 0, ~ = 2rrs), an equilibrium state of  the form 

shown in Fig. 6 is possible. To calculate this state the initial approximation used was 

0 = lO (s  - s:), ve = O, ~o = 7.~s. 

Table 3 shows the decrease in the energy functional and change in rod end coordinate during the iteration process for N = 40. 

In the example considered the functional ~ '  decreases monotonically with no limitations on the values of variations of the 

unknown functions calculated by the self-equalizing discrepancy method [1]. 

This study was carried out with the cooperation of  the D. Soros fund. The authors express their gratitude to the fund 

for material support of the work. 
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